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Abstract

We study the behavior of the eigenvalues of the Laplacian acting on functions when one side
of a connected sum of two closed Riemannian manifolds collapses to a point. We prove that the
eigenvalues converge to those of the limit space, by using the method of Anné and Colbois. From this,
we obtain a gluing theorem for the eigenvalues. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We have much knowledge of the eigenvalues of the Laplacian acting on functions under
collapsings of closed Riemannian manifolds. For a family of Riemannian manifolds with
bounded sectional curvature and diameter, Fukaya[11] proved that the eigenvalues converge
to those of the limit space with respect to the measured Gromov—Hausdorff topology. Shioya
[14] extended it for a family of Alexandrov spaces with curvature bounded below. However,
if the curvature is not bounded below, the eigenvalues do not converge in general. We are
interested in the cases of the convergence of the eigenvalues for a family of Riemannian
manifolds without curvature bounded below. For the collapsings of handles and dumbbells,
the convergence of the eigenvalues have been studied by Chavel and Feldman [6,7] and Anné
and Colbois [2,4], etc. Colbois and Courtois [8] introduced some topology on a family of
pointed Riemannian manifolds and studied the convergence of the eigenvalues with respect
to this topology. Their result requires no conditions on curvature.
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Fig. 1. Collapsing of M, g.).

In the present paper, we study the convergence of the eigenvalues of the Laplacian when
one side of a connected sum of two closed Riemannian manifolds collapses to a point, by
using the method of Anné and Colbois [1-4] (Fig. 1).

Let (M;, g),i = 1, 2, be connected oriented closed Riemannian manifolds of the same
dimensionn (m > 2). For simplicity, we suppose that each megids Euclidean on the
geodesic balB(x;, r;) with the radius; > 0 centered at; € M;, wherer; is smaller than
the injectivity radius of M;, g;). Note that this assumption can be omitted by Remark in [4,

p. 548]. Furthermore, by changing the scalggfwe may suppose = 2. SetM; (r) =
M; \ B(x;,r). We define the isometrgp, between the boundarig® M1(¢), dg1) and
(0M2(1), €20g2), wheredg; is the canonical metric 0dM; (r) induced from(M; (r), g;).
If $"=1(r) is the(m — 1)-sphere of the radiusin R™ andh, its metric, then the identifi-
cations(dM1(g), 9g1) = (S 1(e), hy) and(dMa(1), £29g2) = (5™~ 1(1), £2h1) hold. So
we considerb, as the restrictions” 1(¢), hy) — (8"~1(1), £2h1) of the mapgR™ — R”
with x — ¢ 1x. For anye (0 < ¢ < min{ry, 1}), we glue(M1(e), g1) to (M2(1), £2g2)
along®,. Thus, we obtain the new smooth closed manifeld= M1(e) Up, M2(1) with
the piecewise smooth metric

g1 onMi(e),

8e 1=
‘ e2g>  onMo(1).

We choose orientations 8f; andM> such thatV is naturally oriented. In [2,4], Anné and
Colbois defined the Laplacian q#, g.) and showed that its spectrum consists only of
eigenvalue (see Section 2). Sinkkis connected, the multiplicity of the O-eigenvalue is 1.
Thus, we denote the eigenvalues of the Laplaciatidng.) by

O0=210(M,ge) <r1(M,ge) <+ < Ix(M,g) <,
and similarly for(M1, g1). Then, we obtain the following theorem.
Theorem 1.1. Forall k =0, 1, ..., wehave
!ii)ﬂo)»k(M, 8e) = A(Ma, g1).
For eachk, this is uniformly convergent with respect jo= 0, 1, ..., k. From the proof,
we also find the convergence of the associated eigenfunctions. Furthermore, from Theorem

1.1 and the continuity of the eigenvalues with respect toitR¢opology of metrics, we
obtain the following theorem.
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Theorem 1.2. For any n > 0 and integer k > 0, there exists a smooth metric g, x on M,
which depends on n and k, such that for all j =0, 1, ..., k,
|A; (M, gni) —2;(Mz, gD)| < 1.

In the case of dimension > 3, we can also obtain Theorem 1.2 by Theorem I1I.1 in [9].
Note that ours is valid for: > 2. Our collapsing is different from Fukaya's example in [11,
p. 545] and does not converge in the sense of Colbois and Courtois [8]. Finally, the case of
the Laplacian acting on differential forms has not been known yet.

The structure of the present paper is as follows. In Section 2, we recall the definitions of
the Sobolev spaces and the Laplaciar{#h g.). We divide the proof of Theorem 1.1 into
two stages. In Section 3, we prove lim sup Ay (M, g.) < Ax(M1, g1), and in Section 4,
we prover,(Mi, g1) < liminf oAt (M, g.). In Section 5, we prove Theorem 1.2.

2. Preliminaries

We recall the definitions of the Sobolev spaces and the Laplacian ai’thmanifold
M with the piecewise smooth metrig, according to [2,4]. The.2-space on(M, g,) is
defined as follows.

Definition 2.1.
L2(M, g¢) = L?%(Ma(¢), g1) x L*(M2(1), £2g2).

To define the Sobolev spacHs andH? on(M, g.), we need to impose some gluing con-
ditions on the boundaries 6M1(¢), g1) and(M2(1), €2g-) by means of the trace theorem
(see [13, Section 6.4.8]).

Definition 2.2.

HY(M, g) :={f = (f1. f2) € H'(M1(e), g1) x H' (M2(1), £?g2)|
f1 lomrer= 12 lamp) oPe i LA@M1(e), dg1)},
H?(M, go) :={f = (f1, f2) € H*(M1(e), g1) x H*(M2(1), e%g2)|
f1 Tosaer= f2 lampy oPe  in HL(@M1(e), dg1),
V1(f1) Tomyery= —& v2(f2) Tamp) 0@ INLA@Ma(e), dg1)}.

Herev; andv; are the outward unit vector fields alot@M1(e), dg1) and(dM2(1), dg2),

respectively. Sog~1v, is the unit vector field alon@d M2(1), £23g2). The inner products

on these spaces are defined as the direct sums of thos& 6f), g1) and(Mo(1), £2g2).
Next, we discuss the Laplaciaty and the bilinear formrQ, on (M, g;).

Definition 2.3. For f = (f1, f2) € Dom(A,) := H%(M, g.), the Laplaciam on(M, g.)
is defined as

Ae(f1, [2) = (Agy f1, A2y, f2),
whereA, is the Laplacian for the Riemannian metgic
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Definition 2.4. The bilinear formsy,, andg,, are defined as

Gos (f1, h1) i= f (A1, dha) g, g, for fu.h1 e HX(My(e), g1),
Mi(e)

qg,(f2, h2) 1=/ (df2, dha)g, Auig, fOr fo, ho € HY(M2(1), g2).
M>(1)

The bilinear formQ, on Dom(Q,) := HY(M, g,) is defined as

Qe (f, 1) =gy (f1, h1) + 2, (f2, h2)

o U T [T S
Miq(e) M>z(1)

for f = (f1, f2), h = (h1, ho) € Dom(Q,).

Lemma2.5. Thebilinear form Q. isinducedfromtheLaplacian A,,i.e.for f = (f1, f2) €
Dom(A,) and h = (h1, h2) € Dom(Q¢),

Qe (fv h) = (A€ f’ h)LZ(M:gs)'

Proof. From the definition ofA, and the Green formula (cf. [15, p. 158]), it follows that
(Aef 1) 12001 ) = Dy f1 DD L2001y e).00) + €™ 2Dz f2 h2) L2001,0).2)
= (df1. ) 120u1y ) g + €220 Dh2) L2001,01) )

—/ v1(f1)h1dugg, — 8'"_2/ v2(f2)h2 Ay,
IM1(s) IM2(1)

By the gluing conditionsz(f2) o @, = —evi(f1), h2 0 @ = hy and @} (dusg,) =
e~ 1 duy,,, we obtain

£ / v f2)h2 Qprgg, = "2 / v2(f2) 0 By - hp 0 By - D* (djtag,)
IM>(1) IMy(e)
= —/ v1(f1)h1digg, .
oMa(e)

Hence, we have finished the proof. O

By Section 1 in [4],A. has the properties of the Laplacian on smooth closed Riemannian
manifolds. NamelyA; is a non-negative, self-adjoint elliptic operator and its spectrum
consists only of the eigenvalues with finite multiplicity. We denote.pyM, g.) or A (Q¢)
thekth eigenvalue of the Laplacias,.
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3. Proof of Theorem 1.1, Part |

In this section, we prove lim syup. g Ax (Q:) < Ax(M1, g1), by using the min—max princi-
ple. Letf; be theith eigenfunction oriM1, g1) with the eigenvalug; (M1, g1), such that all
f; are orthonormali =0, 1, .. ., k). We define a cut-off functiog, : [0, co) — [0, 1] as

0 O=<r=<e),
. 2 r
Xe(r) == “loge log (g) (e <r <o),
1 (Ve <),

which was introduced in [10], Proposition 1.3.1 (see also [3, Section 6]). We. 66t :=
Xe(dg, (x1, x)) for x € My, whered,, is the distance induced from.

Let E, be the subspace spanned{lyy fo, ..., xe fx} In H&(Ml(s)o, g1). Then, we can
considerE; as the subspace &f1(M, g,) by the 0-extensiorf — (f, 0). Hence, by the
min—max principle forQ., we have the inequality

;&%ﬂi+

2
(A

us#0eE, L2(M1(¢).81)

)\k(Qs) = Sup [

Sincem > 2, we have

4vol(sm—1(1)) [ve
dyel? dpg, = ———— ==
/B(xl,ﬁ)| Xeliy Gen (loge)? ¢

ase — 0. Hence, in the same way as (4.2) in [3], we obtain

A (Qe) < A (Mq, g1) + 6(8),

wheres§(e) — 0 asse — 0, i.e., we see that lim sup g A (Q:) < At (M1, g1).

r=3dr — 0,

4. Proof of Theorem 1.1, Part 11

In this section, we prove, (M1, g1) < liminf._ o Ax(Q.). Throughout this section, we
denote byC a generic positive constant independent of the functions and the indices.

Let fj. = (f]%e, sz,e) e Dom(Q;) (j = 0,1, ...,k) be orthonormal eigenfunctions
with the eigenvalue. ;(Q,), i.e.,

O (fes f1.0) = 4@ fiel2og gy oo Fredroagn = Bii-

We setw; := liminf._.o2;(Q¢). Our purpose is to show (M1, g1) < a.
_ By using the harmonic extension of (4.3) in [3] (see also [12, p. 40]), we have an extension
f}e € HY(My, g) of £}, such that

1 1
IFjelrcmy, gy = CUF el icmy o), 00)-
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The fam|ly{f ¢ Je>0 Is bounded inH1(M1, g1), since

7 12 _ 12 1 4,1
||f/78||H1(Ml,g1) S C”fjvg”Hl(Ml(S),gl) — C{||f/s5||L2(M1(8),g1) + qgl(fj,g’ fj,g)}

<SC{1+ Qc(fje, fie)} < C{1+1;(M1, g1}, (4.1)
where the last inequality follows from the result of Section 3. Hence, by the weakly con-
vergence theorem, there exist a subsequégyiﬁg} °, and fl in HY(M1, g1), such that
1j(Qe) = aj andf]fsi N fjl weakly in HY(M4, g1), asi — oo, i.e.,e; — 0. Further-
more, since the embeddidg (M1, g1) C L?(M1, g1) is compact by the Rellich theorem,
{fl}ai }i also converges strongly ib?(Mz, g1).

For anyp € C3°(M1 \ {x1}), the space of smooth functions with compact support, we

obtain

951 (f @) = M {Ges (Fje;2 @) + G20, ([ OF = M 0 ((fy, £12) (0, 0))
lim 3 (Qe) (Ffe- 176 @ D12 g,

(sincef; ¢, is the eigenfunction 0D, )

1
= (fjs @) r2(my, 1)

Since C3°(M1 \ {x1}) is dense inHY(M4, g1) (see [1]), we havqul(f Q) =
(f 0 12(My,01) foranye € HY(Mq, g1). From the regularity theorem for weak solu-

tions, it follows thatf! € C*(M1) andA 1fl = a,fl If {fg..... f}} are orthonormal,
thenay is thelth elgenvalue otMl, g1) for somel > k Thus, we havak(Ml, g1) < ay.
Now, we prove that /¢, ..., f1} are orthonormal. Seffa = ¢"/2f2 . In the same

way as (4. 1){f2 i is bounded inH1(M>(1), g2), and hence there exist a subsequence
of {f2,,}; and sz in HX(Ma(1), g2) such thatf2, — f2 weakly in H(Mz(1), g2) and
strongly inL2(M>(1), g2) asi — oc.
Claim4.1. Forj =0,..., k we havefj2 =
If this claim holds, we see thaffd, ..., f}} are orthonormal. In fact,
F1 71 - 1,1 171
5 D 2060 = WA e Jre) 20men o0 T e Jiie) L2BGnen en)
- 2 2
= iILmoo{(fj’s” ]Cl,s;)LZ(M,ggi) - (fj,gl., f‘lygi)Lz(Mz(l)qgizgz)}
L F2 2
=81 = M (fe, fle) L2anp).e0 = 9i1-

where the last equality follows from Claim 4.1.
Now, we prove Claim 4.1. Frorpfﬁei — sz weakly in HY(M»(1), g2) and strongly in
L2(M>(1), g2) asi — oo, it follows that:

£22 i i 2 2 i i 2
”dfj ”LZ(MZ(J-)»gZ) S Ilmlorlf ”dfj,g, ||L2(M2(l),g2) S Ilmlorlf Ei QS,‘ (fj,s,'a fj,é‘,‘)

=liminf £24;(Q,) =0,
11— 00
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i.e., sz is a constant. Furthermore, we see that
72 7212 _1F2 _ 22 722
e = Fi Mt anay.600 = Wi = Jil200).600 197506 L 2000,02).0)
— 0 (asi —> ). 4.2)

On the other hand, we sgf? lampy= 0. In fact, from the gluing condition of; ., (see
Definition 2.2), we have

||fj2,g,. faMz(l) ||L2(3M2(1),3g2) =\/8_i||fﬁ£i faMz(l) ”L2(8M2(l),8i23g2)

=«/€_i||fﬁs,- raMl(Ei) ||L2(3M1(8,-),8g1)

3 Cei/logeilll £, It ayeen 1f m =2,

T Caillf i lomen if m =3,
where the last ineqyalities are obtained by Anné [2]. Slh}@é& Il 1 (M (o), g0y 1S POUNdEd
by (4.1), we haveﬂf%gi loma) |L29my(1),940) —> O @Si — o0. Hence, from the trace
theorem and (4.2), it follows that:

1F7 Tortaw) 1l L20aa(n. 82
< ”f:ﬁs,- loma) | L20Ma(2),000) T ”sz TaMa(1) —sz,s,- loma0) | L2(amo(D),002)
< I1fFe, Torta@ NL2m@.agn + CIFF = Fie i g0 — O
asi — oo, i.e.,fj2 laapy= 0. Sincefj2 is a constant, we obtaiﬁj2 =0.

Therefore, we see tha]fol, e, f_kl} is orthonormal, hence, we have finished the proof
thatig (M1, g1) < ak.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use notation as in Section 1. From Theorem
1.1, for anyn > 0 andk > O, there is arxg > 0, such that for the associated piecewise
smooth metrig,, onM andj =0, 1, ...k,

|2j (M, gsg) — 1j(M1, gD)| < 3n. (5.1)

On the other hand, there exists a sequence of smooth mggri¢s; on M such that
8 — 8 With respect to theC-topology as — oo. For the piecewise smooth metrics
such asg,,, the eigenvalues of the Laplacian also depend continuously on metrics with
respect to the&%-topology (see [5, p. 162]). Hence, there exists@s 0 such that for the
smooth metrigg;,

A (M, gig) = (M, gzo)| < 31. (52)
Therefore, if we set the smooth metgg, = g;,, from (5.1) and (5.2), we obtain
[Aj(M, gni) —Aj(M1, g1)] <,
forj=0,1,... k.
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