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Abstract

We study the behavior of the eigenvalues of the Laplacian acting on functions when one side
of a connected sum of two closed Riemannian manifolds collapses to a point. We prove that the
eigenvalues converge to those of the limit space, by using the method of Anné and Colbois. From this,
we obtain a gluing theorem for the eigenvalues. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We have much knowledge of the eigenvalues of the Laplacian acting on functions under
collapsings of closed Riemannian manifolds. For a family of Riemannian manifolds with
bounded sectional curvature and diameter, Fukaya [11] proved that the eigenvalues converge
to those of the limit space with respect to the measured Gromov–Hausdorff topology. Shioya
[14] extended it for a family of Alexandrov spaces with curvature bounded below. However,
if the curvature is not bounded below, the eigenvalues do not converge in general. We are
interested in the cases of the convergence of the eigenvalues for a family of Riemannian
manifolds without curvature bounded below. For the collapsings of handles and dumbbells,
the convergence of the eigenvalues have been studied by Chavel and Feldman [6,7] and Anné
and Colbois [2,4], etc. Colbois and Courtois [8] introduced some topology on a family of
pointed Riemannian manifolds and studied the convergence of the eigenvalues with respect
to this topology. Their result requires no conditions on curvature.
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Fig. 1. Collapsing of(M, gε).

In the present paper, we study the convergence of the eigenvalues of the Laplacian when
one side of a connected sum of two closed Riemannian manifolds collapses to a point, by
using the method of Anné and Colbois [1–4] (Fig. 1).

Let (Mi, gi), i = 1,2, be connected oriented closed Riemannian manifolds of the same
dimensionm (m ≥ 2). For simplicity, we suppose that each metricgi is Euclidean on the
geodesic ballB(xi, ri) with the radiusri > 0 centered atxi ∈ Mi , whereri is smaller than
the injectivity radius of(Mi, gi). Note that this assumption can be omitted by Remark in [4,
p. 548]. Furthermore, by changing the scale ofg2, we may supposer2 = 2. SetMi(r) :=
Mi \ B(xi, r). We define the isometryΦε between the boundaries(∂M1(ε), ∂g1) and
(∂M2(1), ε2∂g2), where∂gi is the canonical metric on∂Mi(r) induced from(Mi(r), gi).
If Sm−1(r) is the(m− 1)-sphere of the radiusr in Rm andhr its metric, then the identifi-
cations(∂M1(ε), ∂g1) ∼= (Sm−1(ε), hε) and(∂M2(1), ε2∂g2) ∼= (Sm−1(1), ε2h1) hold. So
we considerΦε as the restriction(Sm−1(ε), hε) → (Sm−1(1), ε2h1) of the mapRm → Rm

with x �→ ε−1x. For anyε (0 < ε < min{r1,1}), we glue(M1(ε), g1) to (M2(1), ε2g2)

alongΦε. Thus, we obtain the new smooth closed manifoldM := M1(ε) ∪Φε M2(1) with
the piecewise smooth metric

gε :=
{
g1 onM1(ε),

ε2g2 onM2(1).

We choose orientations ofM1 andM2 such thatM is naturally oriented. In [2,4], Anné and
Colbois defined the Laplacian on(M, gε) and showed that its spectrum consists only of
eigenvalue (see Section 2). SinceM is connected, the multiplicity of the 0-eigenvalue is 1.
Thus, we denote the eigenvalues of the Laplacian on(M, gε) by

0 = λ0(M, gε) < λ1(M, gε) ≤ · · · ≤ λk(M, gε) ≤ · · · ,

and similarly for(M1, g1). Then, we obtain the following theorem.

Theorem 1.1. For all k = 0,1, . . . , we have

lim
ε→0

λk(M, gε) = λk(M1, g1).

For eachk, this is uniformly convergent with respect toj = 0,1, . . . , k. From the proof,
we also find the convergence of the associated eigenfunctions. Furthermore, from Theorem
1.1 and the continuity of the eigenvalues with respect to theC0-topology of metrics, we
obtain the following theorem.
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Theorem 1.2. For any η > 0 and integer k ≥ 0, there exists a smooth metric gη,k on M,
which depends on η and k, such that for all j = 0,1, . . . , k,

|λj (M, gη,k)− λj (M1, g1)| < η.

In the case of dimensionm ≥ 3, we can also obtain Theorem 1.2 by Theorem III.1 in [9].
Note that ours is valid form ≥ 2. Our collapsing is different from Fukaya’s example in [11,
p. 545] and does not converge in the sense of Colbois and Courtois [8]. Finally, the case of
the Laplacian acting on differential forms has not been known yet.

The structure of the present paper is as follows. In Section 2, we recall the definitions of
the Sobolev spaces and the Laplacian on(M, gε). We divide the proof of Theorem 1.1 into
two stages. In Section 3, we prove lim supε→0 λk(M, gε) ≤ λk(M1, g1), and in Section 4,
we proveλk(M1, g1) ≤ lim inf ε→0 λk(M, gε). In Section 5, we prove Theorem 1.2.

2. Preliminaries

We recall the definitions of the Sobolev spaces and the Laplacian on theC∞-manifold
M with the piecewise smooth metricgε, according to [2,4]. TheL2-space on(M, gε) is
defined as follows.

Definition 2.1.

L2(M, gε) := L2(M1(ε), g1)× L2(M2(1), ε
2g2).

To define the Sobolev spacesH 1 andH 2 on(M, gε), we need to impose some gluing con-
ditions on the boundaries of(M1(ε), g1) and(M2(1), ε2g2) by means of the trace theorem
(see [13, Section 6.4.8]).

Definition 2.2.

H 1(M, gε) := {f = (f1, f2) ∈ H 1(M1(ε), g1)×H 1(M2(1), ε
2g2)|

f1 �∂M1(ε)= f2 �∂M2(1) ◦Φε inL2(∂M1(ε), ∂g1)},
H 2(M, gε) := {f = (f1, f2) ∈ H 2(M1(ε), g1)×H 2(M2(1), ε

2g2)|
f1 �∂M1(ε)= f2 �∂M2(1) ◦Φε inH 1(∂M1(ε), ∂g1),

ν1(f1) �∂M1(ε)= −ε−1ν2(f2) �∂M2(1) ◦Φε inL2(∂M1(ε), ∂g1)}.
Hereν1 andν2 are the outward unit vector fields along(∂M1(ε), ∂g1) and(∂M2(1), ∂g2),
respectively. So,ε−1ν2 is the unit vector field along(∂M2(1), ε2∂g2). The inner products
on these spaces are defined as the direct sums of those of(M1(ε), g1) and(M2(1), ε2g2).

Next, we discuss the Laplacian∆ε and the bilinear formQε on (M, gε).

Definition 2.3. Forf = (f1, f2) ∈ Dom(∆ε) := H 2(M, gε), the Laplacian∆ε on(M, gε)

is defined as

∆ε(f1, f2) := (∆g1f1,∆ε2g2
f2),

where∆g is the Laplacian for the Riemannian metricg.
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Definition 2.4. The bilinear formsqg1 andqg2 are defined as

qg1(f1, h1) :=
∫
M1(ε)

〈df1,dh1〉g1 dµg1 for f1, h1 ∈ H 1(M1(ε), g1),

qg2(f2, h2) :=
∫
M2(1)

〈df2,dh2〉g2 dµg2 for f2, h2 ∈ H 1(M2(1), g2).

The bilinear formQε on Dom(Qε) := H 1(M, gε) is defined as

Qε(f, h) := qg1(f1, h1)+ qε2g2
(f2, h2)

=
∫
M1(ε)

〈df1,dh1〉g1 dµg1 + εm−2
∫
M2(1)

〈df2,dh2〉g2 dµg2

for f = (f1, f2), h = (h1, h2) ∈ Dom(Qε).

Lemma 2.5. The bilinear formQε is induced from the Laplacian∆ε, i.e. forf = (f1, f2) ∈
Dom(∆ε) and h = (h1, h2) ∈ Dom(Qε),

Qε(f, h) = (∆εf, h)L2(M,gε)
.

Proof. From the definition of∆ε and the Green formula (cf. [15, p. 158]), it follows that

(∆εf, h)L2(M,gε)
= (∆g1f1, h1)L2(M1(ε),g1)

+ εm−2(∆g2f2, h2)L2(M2(1),g2)

= (df1,dh1)L2(M1(ε),g1)
+ εm−2(df2,dh2)L2(M2(1),g2)

−
∫
∂M1(ε)

ν1(f1)h1 dµ∂g1 − εm−2
∫
∂M2(1)

ν2(f2)h2 dµ∂g2.

By the gluing conditionsν2(f2) ◦ Φε = −εν1(f1), h2 ◦ Φε = h1 andΦ∗
ε (dµ∂g2) =

ε−m+1 dµ∂g1, we obtain

εm−2
∫
∂M2(1)

ν2(f2)h2 dµ∂g2 = εm−2
∫
∂M1(ε)

ν2(f2) ◦Φε · h2 ◦Φε ·Φ∗
ε (dµ∂g2)

= −
∫
∂M1(ε)

ν1(f1)h1 dµ∂g1.

Hence, we have finished the proof. �

By Section 1 in [4],∆ε has the properties of the Laplacian on smooth closed Riemannian
manifolds. Namely,∆ε is a non-negative, self-adjoint elliptic operator and its spectrum
consists only of the eigenvalues with finite multiplicity. We denote byλk(M, gε) orλk(Qε)

thekth eigenvalue of the Laplacian∆ε.
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3. Proof of Theorem 1.1, Part I

In this section, we prove lim supε→0 λk(Qε) ≤ λk(M1, g1), by using the min–max princi-
ple. Letfi be theith eigenfunction on(M1, g1)with the eigenvalueλi(M1, g1), such that all
fi are orthonormal(i = 0,1, . . . , k). We define a cut-off functionχε : [0,∞) → [0,1] as

χε(r) :=




0 (0 ≤ r ≤ ε),

− 2

logε
log

( r
ε

)
(ε ≤ r ≤ √

ε),

1 (
√
ε ≤ r),

which was introduced in [10], Proposition 1.3.1 (see also [3, Section 6]). We setχε(x) :=
χε(dg1(x1, x)) for x ∈ M1, wheredg1 is the distance induced fromg1.

LetEε be the subspace spanned by{χεf0, . . . , χεfk} in H 1
0 (M1(ε)

◦, g1). Then, we can
considerEε as the subspace ofH 1(M, gε) by the 0-extensionf �→ (f,0). Hence, by the
min–max principle forQε, we have the inequality

λk(Qε) ≤ sup
uε �=0∈Eε

{
qg1(uε, uε)

‖uε‖2
L2(M1(ε),g1)

}
.

Sincem ≥ 2, we have∫
B(x1,

√
ε)

|dχε|2g1
dµg1 = 4 vol(Sm−1(1))

(logε)2

∫ √
ε

ε

rm−3 dr → 0,

asε → 0. Hence, in the same way as (4.2) in [3], we obtain

λk(Qε) ≤ λk(M1, g1)+ δ(ε),

whereδ(ε) → 0 asε → 0, i.e., we see that lim supε→0 λk(Qε) ≤ λk(M1, g1).

4. Proof of Theorem 1.1, Part II

In this section, we proveλk(M1, g1) ≤ lim inf ε→0 λk(Qε). Throughout this section, we
denote byC a generic positive constant independent of the functions and the indices.

Let fj,ε = (f 1
j,ε, f

2
j,ε) ∈ Dom(Qε) (j = 0,1, . . . , k) be orthonormal eigenfunctions

with the eigenvalueλj (Qε), i.e.,

Qε(fj,ε, fj,ε) = λj (Qε)‖fj,ε‖2
L2(M,gε)

, (fi,ε, fj,ε)L2(M,gε)
= δij.

We setαj := lim inf ε→0 λj (Qε). Our purpose is to showλk(M1, g1) ≤ αk.
By using the harmonic extension of (4.3) in [3] (see also [12, p. 40]), we have an extension

f̄ 1
j,ε ∈ H 1(M1, g1) of f 1

j,ε, such that

‖f̄ 1
j,ε‖H1(M1,g1)

≤ C‖f 1
j,ε‖H1(M1(ε),g1)

.
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The family{f̄ 1
j,ε}ε>0 is bounded inH 1(M1, g1), since

‖f̄ 1
j,ε‖2

H1(M1,g1)
≤C‖f 1

j,ε‖2
H1(M1(ε),g1)

= C{‖f 1
j,ε‖2

L2(M1(ε),g1)
+ qg1(f

1
j,ε, f

1
j,ε)}

≤C{1 +Qε(fj,ε, fj,ε)} ≤ C{1 + λj (M1, g1)}, (4.1)

where the last inequality follows from the result of Section 3. Hence, by the weakly con-
vergence theorem, there exist a subsequence{f̄ 1

j,εi
}∞i=1 and f̄ 1

j in H 1(M1, g1), such that

λj (Qεi ) → αj andf̄ 1
j,εi

→ f̄ 1
j weakly inH 1(M1, g1), asi → ∞, i.e.,εi → 0. Further-

more, since the embeddingH 1(M1, g1) ⊂ L2(M1, g1) is compact by the Rellich theorem,
{f̄ 1

j,εi
}i also converges strongly inL2(M1, g1).

For anyϕ ∈ C∞
0 (M1 \ {x1}), the space of smooth functions with compact support, we

obtain

qg1(f̄
1
j , ϕ)= lim

i→∞
{qg1(f

1
j,εi

, ϕ)+ qε2
i g2
(f 2

j,εi
,0)} = lim

i→∞
Qεi ((f

1
j,εi

, f 2
j,εi

), (ϕ,0))

= lim
i→∞

λj (Qεi )((f
1
j,εi

, f 2
j,εi

), (ϕ,0))L2(M,gεi )

(sincefj,εi is the eigenfunction ofQεi )

= αj (f̄
1
j , ϕ)L2(M1,g1)

.

SinceC∞
0 (M1 \ {x1}) is dense inH 1(M1, g1) (see [1]), we haveqg1(f̄

1
j , ϕ) = αj

(f̄ 1
j , ϕ)L2(M1,g1)

for any ϕ ∈ H 1(M1, g1). From the regularity theorem for weak solu-

tions, it follows thatf̄ 1
j ∈ C∞(M1) and∆g1f̄

1
j = αj f̄

1
j . If {f̄ 1

0 , . . . , f̄
1
k } are orthonormal,

thenαk is thelth eigenvalue of(M1, g1) for somel ≥ k. Thus, we haveλk(M1, g1) ≤ αk.
Now, we prove that{f̄ 1

0 , . . . , f̄
1
k } are orthonormal. Set̃f 2

j,ε := εm/2f 2
j,ε. In the same

way as (4.1),{f̃ 2
j,εi

}i is bounded inH 1(M2(1), g2), and hence there exist a subsequence

of {f̃ 2
j,εi

}i andf̃ 2
j in H 1(M2(1), g2) such thatf̃ 2

j,εi
→ f̃ 2

j weakly inH 1(M2(1), g2) and

strongly inL2(M2(1), g2) asi → ∞.

Claim 4.1. For j = 0, . . . , k, we havef̃ 2
j = 0.

If this claim holds, we see that{f̄ 1
0 , . . . , f̄

1
k } are orthonormal. In fact,

(f̄ 1
j , f̄

1
l )L2(M1,g1)

= lim
i→∞

{(f 1
j,εi

, f 1
l,εi
)L2(M1(εi ),g1)

+ (f̄ 1
j,εi

, f̄ 1
l,εi
)L2(B(x1,εi ),g1)

}
= lim

i→∞
{(fj,εi , fl,εi )L2(M,gεi )

− (f 2
j,εi

, f 2
l,εi
)L2(M2(1),ε2

i g2)
}

= δjl − lim
i→∞

(f̃ 2
j,εi

, f̃ 2
l,εi
)L2(M2(1),g2)

= δjl,

where the last equality follows from Claim 4.1.
Now, we prove Claim 4.1. From̃f 2

j,εi
→ f̃ 2

j weakly inH 1(M2(1), g2) and strongly in

L2(M2(1), g2) asi → ∞, it follows that:

‖df̃ 2
j ‖2

L2(M2(1),g2)
≤ lim inf

i→∞
‖df̃ 2

j,εi
‖2
L2(M2(1),g2)

≤ lim inf
i→∞

ε2
i Qεi (fj,εi , fj,εi )

= lim inf
i→∞

ε2
i λj (Qεi ) = 0,
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i.e., f̃ 2
j is a constant. Furthermore, we see that

‖f̃ 2
j,εi

− f̃ 2
j ‖2

H1(M2(1),g2)
= ‖f̃ 2

j,εi
− f̃ 2

j ‖2
L2(M2(1),g2)

+ ‖df̃ 2
j,εi

‖2
L2(M2(1),g2)

→ 0 (asi → ∞). (4.2)

On the other hand, we seẽf 2
j �∂M2(1)= 0. In fact, from the gluing condition offj,εi (see

Definition 2.2), we have

‖f̃ 2
j,εi

�∂M2(1) ‖L2(∂M2(1),∂g2)
= √

εi‖f 2
j,εi

�∂M2(1) ‖L2(∂M2(1),ε2
i ∂g2)

= √
εi‖f 1

j,εi
�∂M1(εi ) ‖L2(∂M1(εi ),∂g1)

≤
{
Cεi

√|logεi |‖f 1
j,εi

‖H1(M1(εi ),g1)
if m = 2,

Cεi‖f 1
j,εi

‖H1(M1(εi ),g1)
if m ≥ 3,

where the last inequalities are obtained by Anné [2]. Since‖f 1
j,εi

‖H1(M1(εi ),g1)
is bounded

by (4.1), we have‖f̃ 2
j,εi

�∂M2(1) ‖L2(∂M2(1),∂g2)
→ 0 asi → ∞. Hence, from the trace

theorem and (4.2), it follows that:

‖f̃ 2
j �∂M2(1) ‖L2(∂M2(1),∂g2)

≤ ‖f̃ 2
j,εi

�∂M2(1) ‖L2(∂M2(1),∂g2)
+ ‖f̃ 2

j �∂M2(1) −f̃ 2
j,εi

�∂M2(1) ‖L2(∂M2(1),∂g2)

≤ ‖f̃ 2
j,εi

�∂M2(1) ‖L2(∂M2(1),∂g2)
+ C‖f̃ 2

j − f̃ 2
j,εi

‖H1(M2(1),g2)
→ 0,

asi → ∞, i.e., f̃ 2
j �∂M2(1)= 0. Sincef̃ 2

j is a constant, we obtaiñf 2
j = 0.

Therefore, we see that{f̄ 1
0 , . . . , f̄

1
k } is orthonormal, hence, we have finished the proof

thatλk(M1, g1) ≤ αk.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use notation as in Section 1. From Theorem
1.1, for anyη > 0 andk ≥ 0, there is anε0 > 0, such that for the associated piecewise
smooth metricgε0 onM andj = 0,1, . . . , k,

|λj (M, gε0)− λj (M1, g1)| < 1
2η. (5.1)

On the other hand, there exists a sequence of smooth metrics{gi}∞i=1 on M such that
gi → gε0 with respect to theC0-topology asi → ∞. For the piecewise smooth metrics
such asgε0, the eigenvalues of the Laplacian also depend continuously on metrics with
respect to theC0-topology (see [5, p. 162]). Hence, there exists ani0 > 0 such that for the
smooth metricgi0

|λj (M, gi0)− λj (M, gε0)| < 1
2η. (5.2)

Therefore, if we set the smooth metricgη,k := gi0, from (5.1) and (5.2), we obtain

|λj (M, gη,k)− λj (M1, g1)| < η,

for j = 0,1, . . . , k.
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